MIDTERM 1 STUDY GUIDE

PEYAM RYAN TABRIZIAN

Know how to:

1. Chapter 1: Functions and Models

- Determine whether a given graph is the graph of a function (1.1.5, 1.1.6)
- Given the graph of a function, determine its domain and range (1.1.6, 1.1.7)
- Given a formula, find the domain of a function (1.1.32, 1.1.36, 1.1.37, 1.1.41)
- Given a formula, find the range of a function (1.1.32)
- Find an expresion of a function whose graph is a given curve (1.1.45, 1.1.47)
- Solve word problems (1.1.57, 1.2.16)
- Determine whether a function is even, odd, or neither, given a graph (1.1.61, 1.1.62)
- Determine whether a function is even, odd, or neither, given a formula (1.1.65, 1.1.69)
- Classify functions as power functions, etc. (1.2.2)
- Match a given equation with a given graph (1.2.4)
- Find expressions of quadratic functions whose graphs are shown (1.2.8)
- Explain how to obtain a new function from a given function (1.3.1, 1.3.2, 1.3.7)
- Graph functions that are obtained from shifting/stretching/flipping a given function (1.3.13, 1.3.14, 1.3.17, 1.3.18)
- Find $f+g, f-g, f g, \frac{f}{g}(1.3 .29,1.3 .30)$
- Find composition of functions (1.3.31, 1.3.35, 1.3.36)
- Find domains of functions that involve e^{x} or $\ln (x)(1.5 .15,1.5 .16)$
- Find an exponential functions whose graphs are given $(1.5 .17,1.5 .18)$
- Given a graph, determine whether a function is one-to-one (1.6.5, 1.6.6)
- Given a formula, determine whether a function is one-to-one (1.6.9, 1.6.10, 1.6.11)
- Given a formula for f find things like $f^{-1}(3)(1.6 .15,1.6 .16,1.6 .17)$
- Given the graph of f, find the domain and range of f^{-1} as well as $f^{-1}(0)(1.6 .18)$
- Find the formula for the inverse of a function (1.6.21, 1.6.23, 1.6.25, 1.6.26)
- Simplify formulas using $\ln (1.6 .33,1.6 .35,1.6 .36,1.6 .39)$
- Solve equations using e^{x} or $\ln (x)(1.6 .47,1.6 .48)$
- Find exact values of expressions involving inverse trig functions (1.6.59, 1.6.60, $1.6 .63,1.6 .64)$
- Simplify expressions involving inverse trig functions, using the triangle method (1.6.65, 1.6.66, 1.6.67, 1.6.68)

[^0]
2. Chapter 2: Limits and Derivatives

- Given a graph, find a given limit if it exists or explain why it does not exist (2.2.6, 2.2.7, 2.2.8, 2.2.9)
- Sketch the graph of a function which satisfies certain limit conditions (2.2.14)
- Find limits of a function:
- Step 1: Just by plugging in (2.3.3, 2.3.6, 2.4.9)
- Step 2: By noticing that it's of the form $\frac{1}{0^{+}}=\infty$ or $\frac{1}{0^{-}}=-\infty$ (2.2.25, 2.2.28, 2.2.29, 2.2.30, 2.2.40)
- Step 3: By factoring out the numerator and the denominator and simplifying (2.3.13, 2.3.17, 2.3.18, 2.3.26)
- Step 4: Whenever there is a square root, by multiplying numerator and denominator by the conjugate form (2.3.21, 2.3.23, 2.3.29, 2.3.30)
- Step 5: By using the squeeze theorem (2.3.37, 2.3.38)
- Step 6: By calculating $\lim _{x \rightarrow a^{-}}$and $\lim _{x \rightarrow a^{+}}$and by noticing that they're equal or not $(2.3 .39,2.3 .42,2.3 .47)$
Note: If you need more practice, try the following set of problems: 2.3.22, 2.3.8, 2.3.11, 2.3.12, 2.3.36
- Find limits using the $\epsilon-\delta$ notion of a limit (2.4.19, 2.4.20, 2.4.25, 2.4.26, 2.4.29, 2.4.30, 2.4.31, 2.4.32, 2.4.36)
- Given a graph, say where a function is continuous, and state the types of discontinuities (2.5.3, 2.5.4)
- Given a formula, say where a function is continuous and state the types of discontinuities (2.5.27, 2.5.37, 2.5.39, 2.5.40)
- Explain why a function is continuous $(2.5 .27,2.5 .28)$
- Sketch the graph of a function which satisfies certain continuity conditions (2.5.5, 2.5.6)
- Evaluate limits using continuity (2.5.33, 2.5.34. 2.6.34, 2.6.36)
- Use the intermediate value theorem to show that a given equation has at least one solution in a given interval ($2.5 .47,2.5 .48,2.5 .49$)
- Use the intermediate value theorem to solve a cute word problem (2.5.65)
- Given a graph, find limits at ∞ as well as equations of asymptotes $(2.6 .3,2.6 .4)$
- Sketch a graph of a function which satisfies certain limit at ∞ conditions (2.6.7, 2.6.8, 2.6.9)
- Find limits at infinity of a function:
- Step 1: Just by plugging in (2.6.15)
- Step 2: By factoring out the highest power out of an expression (2.6.31, 2.6.50)
- Step 3: By factoring out the highest power of the numerator and the denominator (2.6.17, 2.6.19, 2.6.21, 2.6.33)
- Step 4: By factoring out the highest power of x out of a square root (2.6.22, 2.6.23, 2.6.24)
- Step 5: By using the conjugate form, making sure to do Step 4 first (2.6.25, 2.6.26, 2.6.27)
- Step 6: By using the squeeze theorem (2.6.35, 2.6.57)

Note: If you need more practice, try the following set of problems: 2.6.30, 2.6.29, 2.6.20, 2.6.37, 2.6.44

- Find an equation of the tangent line of a function at a given point (2.7.6, 2.7.7, $2.7 .8,2.7 .18)$
- Sketch the graph of a function which satisfies certain derivative conditions (2.7.19, 2.7.20)
- Express a given limit as a derivative of some function f at a given point a (2.7.31, 2.7.32, 2.7.33, 2.7.34, 2.7.35)
- Understand that the derivative represents a rate of change (2.7.40, 2.7.46)
- Given a graph of f, sketch the graph of its derivative (2.8.4, 2.8.7, 2.8.9, 2.8.11)
- Find the derivative of a function using the definition of the derivative (2.7.25, 2.7.26, 2.7.27, 2.7.30, 2.8.10, 2.8.21, 2.8.24, 2.8.25, 2.8.28, 2.8.29)
- Given a graph of f, say where it is not differentiable (2.8.35, 2.8.38)
- Identify given curves with f, f^{\prime}, and $f^{\prime \prime}(2.8 .41,2.8 .43)$

3. Chapter 3: Differentiation rules

- Differentiate polynomials, as well as exponential and root functions (3.1.5, 3.1.7, 3.1.11, 3.1.13, 3.1.17, 3.1.20, 3.1.31, 3.1.32)
- Differentiate functions using the product and quotient rules (3.2.3, 3.2.5, 3.2.6, 3.2.7, 3.2.13, 3.2.15, 3.2.17, 3.2.19, 3.2.25)
- Differentiate functions involving trigonometric functions (3.3.5, 3.3.7, 3.3.8, 3.3.9, 3.3.13)
- Find the equation to the tangent line / normal line to a given curve at a given point (3.1.33, 3.1.34, 3.1.35, 3.1.36, 3.2.31, 3.2.33, 3.3.21, 3.3.24)
- Find an equation of the tangent line to a function that is parallel to a given line (3.1.54, 3.1.56)
- Find $f^{\prime \prime}(x)(3.2 .27,3.2 .41)$
- Given a graph of f and g, find $(f g)^{\prime}(1),\left(\frac{f}{g}\right)^{\prime}(1)$ etc. (3.2.47, 3.2.48)
- Find limits involving $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}=1$ and $\lim _{x \rightarrow 0} \frac{\cos (x)-1}{x}=0$ (3.3.49, 3.3.50, 3.3.42)

[^0]: Date: Thursday, February 17th, 2010.

